
Source code for RNN Recurrent Neural Network

RNN(Recurrent Neural Network)

1. Why need RNN
2. What is RNN
3. Architecture of RNN
4. Understand RNN - Forward Propagation 
5. Understand RNN - Back propagation
6. Implementation of RNN in TensorFlow

1

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Why need RNN

In Natural language processing:
The sequence of words define their meaning

● Will you do it?
● Do you will it?

● Woman, without her man, is helpless.
● Woman! Without her, man is helpless!

● The dragon swallowed the knight.
● The knight swallowed the dragon.

2

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Why need RNN

In Bioinformatics:
Genome sequence define nucleotides even life

Order of As, Cs, Gs, and Ts that make up an 
organism's DNA. The human genome is made 
up of over 3 billion of these genetic letters.

DNA sequence that has been translated from 
life's chemical alphabet into our alphabet of 
written letters might look like this:

3

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

What is RNN
How to predict the next word in a sentence?

● Simplest MLP(Multilayer Perceptron)

● Multilayer MLP

The input layer receives the input, the hidden 
layer activations are applied and then we finally 
receive the output.

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

What is RNN
Here, the weights and bias of these hidden layers are different. 
And hence each of these layers behave independently and cannot be 
combined together. 
To combine these hidden layers together, we shall have the same 
weights and bias for these hidden layers.

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Architecture of RNN
Unfold the RNN, we can see the architecture of RNN

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Understand RNN - Steps
Steps in a recurrent neural network:
If you feel confused for my following example, 
please review these steps again

1. A single time step of the input is supplied to the network i.e. xt is 
supplied to the network

2. Calculate current state using a combination of the current input and 
the previous state i.e. we calculate ht

3. The current ht becomes ht-1 for the next time step
4. Go as many time steps as the problem demands and combine the 

information from all the previous states

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Understand RNN - Steps
Steps in a recurrent neural network:
If you feel confused for my following example, 
please review these steps again

5. Once all the time steps are completed, the final current state is used to 
calculate the output yt

6. The output is then compared to the actual output and the error is 
generated

7. The error is then backpropagated to the network to update the and 
the network is trained

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Understand RNN - Forward Propagation
To understand RNN, let’s see how Forward Propagation works:
For the word ‘hello’, we predict the last letter ‘o’ from ‘h’, ‘e’ and ‘l’ 

Input
Initialization

Step 1:
Calculate
Wxh*Xt

One hot encoded Input Randomly initialized weights

Randomly initialized weights First input xt
Wxh*Xt

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Understand RNN - Forward Propagation
To understand RNN, let’s see how Forward Propagation works:
For the word ‘hello’, we predict the last letter ‘o’ from ‘h’, ‘e’, and ‘l’

Step 2:
calculate 
(whh*ht-1+bias) Randomly 

initialized
Whh

Randomly 
initialized biasHt-1

previous state is [0,0,0] 
since there is no letter 
prior to it.

Result of
(whh*ht-1+bias)

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Understand RNN - Forward Propagation
To understand RNN, let’s see how Forward Propagation works:
For the word ‘hello’, we predict the last letter ‘o’ from h, e, l and l

Step 3: Get current State

whh*ht-1+biasWxh*Xt

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Understand RNN - Forward Propagation
To understand RNN, let’s see how Forward Propagation works:
For the word ‘hello’, we predict the last letter ‘o’ from h, e, l and l

Step 4: ht become ht-1 and ‘e’ is supplied

Wxh*Xt

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Understand RNN - Forward Propagation
To understand RNN, let’s see how Forward Propagation works:
For the word ‘hello’, we predict the last letter ‘o’ from h, e, l and l

Step 5: calculating ht for the letter “e”,

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Understand RNN - Forward Propagation
To understand RNN, let’s see how Forward Propagation works:
For the word ‘hello’, we predict the last letter ‘o’ from h, e, l and l

Step 6: calculate yt for the letter ‘e’

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Understand RNN - Forward Propagation
To understand RNN, let’s see how Forward Propagation works:
For the word ‘hello’, we predict the last letter ‘o’ from h, e, l and l

Step 7: Calculate probability using soft-max function

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Understand RNN - Back propagation
To understand RNN, let’s see how Forward Propagation works:
For the word ‘hello’, we predict the last letter ‘o’ from h, e, l and l

If we convert these probabilities to understand the prediction, we see that the 
model says that the letter after “e” should be h, 

since the highest probability is for the letter “h”. Does this mean we have done 
something wrong? 
No, so here we have hardly trained the network. We have just shown it two 
letters. So it pretty much hasn’t learnt anything yet.

Now the next BIG question that faces us is how does Back propagation work in 
case of a Recurrent Neural Network. How are the weights updated while there is a 
feedback loop?

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Understand RNN - Back propagation
To understand RNN, let’s see how Forward Propagation works:
For the word ‘hello’, we predict the last letter ‘o’ from h, e, l and l

yt is the predicted value
ȳt is the actual value 
The error is calculated as a cross entropy loss 
Et(ȳt,yt) = – ȳt log(yt)
E(ȳ,y) = – ∑ ȳt log(yt)

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

Understand RNN - Back propagation
To understand RNN, let’s see how Forward Propagation works:
For the word ‘hello’, we predict the last letter ‘o’ from h, e, l and l

The steps of back propagation:
1. The cross entropy error is computed using the current output and the actual 

output
2. Network is unrolled for all the time steps
3. For the unrolled network, the gradient is calculated for each time step with 

respect to the weight parameter
4. Weight is the same for all the time steps the gradients can be combined 

together for all time steps
5. The weights are then updated for both recurrent neuron and the dense layers

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb


Source code for RNN Recurrent Neural Network

RNN(Recurrent Neural Network)

19

This is the end

https://github.com/CMWENLIU/deep-learning-TF/blob/master/rnn.ipynb

