
The question we want to answer now is the following:

If A is not similar to a diagonal matrix, then what is the simplest matrix that A
is similar to?

Before we can provide the answer, we will have to introduce a few definitions.

Definition: A square matrix A is block diagonal if A has the form

A =


A1 O · · · O
O A2 · · · O
...

...
. . .

...
O O · · · Ak

 ,

where each Ai is a square matrix, and the diagonals of each Ai lie on the diagonal of A.
Each O is a zero matrix of appropriate size. Each Ai is called a block of A.

Technically, every square matrix is a block diagonal matrix. But we only use the terminology
when there are at least two blocks in the matrix. Here is an example of a ‘typical’ block
diagonal matrix:

A =


1 3 2 0 0 0
7 0 2 0 0 0
1 1 2 0 0 0
0 0 0 6 0 0
0 0 0 0 2 1
0 0 0 0 3 3


This matrix has blocks of size 3, 1 and 2 as we move down the diagonal. The three blocks
in this matrix are

A1 =

 1 3 2
7 0 2
1 1 2

 , A2 = [6] , A3 =

[
2 1
3 3

]
.

The lines are just drawn to illustrate the blocks.

Definition: A Jordan block with value λ is a square, upper triangular matrix whose
entries are all λ on the diagonal, all 1 on the entries immediately above the diagonal, and 0
elsewhere:

J(λ) =



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


.

Here’s what the Jordan blocks of size 1, 2 and 3 look like:

[λ] ,

[
λ 1
0 λ

]
,

 λ 1 0
0 λ 1
0 0 λ

 .



Definition: A Jordan form matrix is a block diagonal matrix whose blocks are all Jordan
blocks.

For example, every diagonal p× p matrix is a Jordan form, with p 1× 1 Jordan blocks. Here
are some more interesting examples (again, lines have been drawn to illustrate the blocks):

1 1 0 0 0 0
0 1 0 0 0 0
0 0 3 1 0 0
0 0 0 3 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 2




2 1 0 0
0 2 0 0
0 0 2 1
0 0 0 2



Now, here’s the big theorem that answers our first question:

Theorem 1 Let A be a p× p matrix. Then there is a Jordan form matrix J that is similar
to A.

In fact, we can be more specific than that:

Theorem 2 Let A be a p × p matrix, with s distinct eigenvalues λ1, · · · , λs. Let each λi

have algebraic multiplicity mi and geometric multiplicity µi. Then A is similar to a Jordan
form matrix

J =


J1 O · · · O
O J2 · · · O
...

...
. . .

...
O O · · · Jµ

 ,

where

1. µ = µ1 + µ2 + · · ·+ µs,

2. For each λi, the number of Jordan blocks in J with value λi is equal to µi,

3. λi appears on the diagonal of J exactly mi times.

Further, the matrix J is unique, up to re-ordering the Jordan blocks on the diagonal.

This is a pretty complicated theorem, and we aren’t going to try to prove it here. But we will
learn a method for finding the Jordan form of a matrix A, and also finding the nonsingular
matrix Q such that J = Q−1AQ.



Algorithm for the Jordan Form of A

1. Compute the distinct eigenvalues λ1, λ2, . . . , λs, along with the associated algebraic
multiplicities m1, m2, . . . ,ms and geometric multiplicities µ1, µ2, . . . , µs.

2. Treat each eigenvalue in turn. For a given eigenvalue λ of algebraic multiplicity m and
geometric multiplicity µ, we start computing the E-spaces and their dimensions. The
k-th E-space is

Ek
λ =

{
x : (A− λI)kx = 0

}
So E1

λ is just Eλ, and we build from there. We stop when we get to an Ek
λ that has

dimension m, the algebraic multiplicity of λ.

3. We make a diagram of boxes as follows. Compute the numbers

d1 = dim E1
λ,

d2 = dim E2
λ − dim E1

λ,

...
...

dk = dim Ek
λ − dim Ek−1

λ .

Now make a diagram with d1 boxes in the first row, d2 boxes in the second row, and
so on. For example, if d1 = 4, d2 = 2, d3 = 2, d4 = 1, then we get a diagram

����

��

��

�

We are going to ‘fill in’ the diagram with vectors as follows.

4. Start at the bottom of the diagram, and fill the boxes in row k with linearly independent
vectors that belong to Ek

λ but not Ek−1
λ . Anytime you have a vector v in a box, the

box immediately above it gets filled with the vector (A− λI)v. If a box is the lowest
in its column, and belongs to row i, fill that box with a new vector from Ei

λ, which is
linearly independent to both Ei−1

λ and all the other vectors in row i.

5. Repeat steps 2 through 4 for each distinct eigenvalue. You will get a diagram full of
vectors for each one.

6. Make a matrix Q as follows. For each eigenvalue, consider the associated diagram.
The vectors in the boxes become the columns of Q as follows. Start at the top of the
leftmost column, and use the vectors as you go down the column. When you reach
the end of a column, go to the next column. When you finish one diagram, go to first
column of the next diagram. This gives the matrix Q.

7. The Jordan form of A is given by J = Q−1AQ. But the nice part of the algorithm is
that you can compute J without finding Q! In fact J will have one Jordan block
for each column of each diagram. The value of the block is given by the eigenvalue,
and the size of the block is equal to the number of squares in the column. You put the
blocks down the diagonal of J in the same order you chose the vectors in Q.



Examples

1. A =

[
2 −3
3 −4

]
. For this matrix, the characteristic polynomial is (1 + λ)2, so there is

one eigenvalue, λ = −1, with m = 2. Now, we compute E-spaces:

E1
−1: Solving (A + I)x = 0 gives:[

3 −3 0
3 −3 0

]
−→

[
1 −1 0
0 0 0

]
.

E1
−1 =

{[
t
t

]}
=

{
t

[
1
1

]}
.

So d1 = µ = 1. Since dim E1
−1 < m, we have to compute another E-space.

E2
−1: Solving (A + I)2x = 0:

(A + I)2 =

[
0 0
0 0

]
,

so E2
−1 = span (e1, e2), and d2 = 2 − 1 = 1. Since dim E2

−1 = m, we don’t need any
more E-spaces. Since we have d1 = 1, d2 = 1, our diagram looks like:

�

�

We put a vector in the lower box. It has to be a vector in E2
−1 that is linearly inde-

pendent to E1
−1. That’s easy enough – how about v1 = [1 0]T . Above v1, we have to

put (A + I)v1, which is

v2 =

[
3 −3
3 −3

] [
1
0

]
=

[
3
3

]
.

Hence, our diagram is
v2

v1
,

So

Q = [v2 v1] =

[
3 0
3 1

]
.

Finally, without computing Q−1AQ, we still know what J looks like. There is only one
column, so J is just one Jordan block, of size 2, with value λ = −1:

J =

[
−1 1

0 −1

]
.



2. A =

 3 1 0
−1 1 0

3 2 2

.

We skip the computation to show that A has only one eigenvalue, λ = 2, of multiplicity
3. Computing E1

2 :  1 1 0 0
−1 −1 0 0

3 2 0 0

 −→

 1 0 0 0
0 1 0 0
0 0 0 0

 .

So E1
2 is spanned by the vector [0 0 1]T . So d1 = 1. Turning to E2

2 , we solve
(A− 2I)2x = 0:  0 0 0 0

0 0 0 0
1 1 0 0


So E2

2 is spanned by [−1 − 1 0]T and [0 0 1]T . So d2 = 2 − 1. We need to
compute the E-space. But computation shows that (A − 2I) = O, the zero matrix,
so E3

2 is spanned by e1, e2, e3. So d3 = 1 and we can stop here. Our diagram is one
column of three boxes.

The bottom box gets filled with a vector from E3
2 that is linearly independent of E2

2 .
The vector v1 = e1 will work. Above there goes v2 = (A− 2I)v1 = [1 − 1 3]T , and
above that goes v3 = (A− 2I)v2 = [0 0 1]T . Since our diagram now looks like

v3

v2

v1

,

we get the transition matrix

Q = [v3 v2 v1] =

 0 1 1
0 −1 0
1 3 0

 .

Again, there is only one column, so only one Jordan block, which has value 2 and size
3. We get the Jordan form matrix

J =

 2 1 0
0 2 1
0 0 2

 .



3. A =

 2 4 −8
0 0 4
0 −1 4

.

You can check that this matrix also has only the eigenvalue 2, with multiplicity 3. We
compute the E-spaces. First, for E1

2 ,

[A− 2I|O] →

 0 4 −8 0
0 −2 −4 0
0 −1 2 0

 →

 0 1 −2 0
0 0 0 0
0 0 0 0

 .

So E1
2 is spanned by the two vectors [1 0 0]T and [0 2 1]T . Also, d2 = 2 < 3, so

we need another E-space. Computing E2
2 , we see that (A−2I)2 = O, so E2

2 is spanned
by the standard basis, and d2 = 3− 2 = 1. We can stop, since E2

2 has dimension 3.

Our diagram looks like

v2 v3

v1

where v1 is a vector in E2
2 linearly independent of E1

2 . We get v2 = (A− 2I)v1, and we
finally choose v3 ∈ E1

2 linearly independent of v2. If we start by choosing v1 = e2, we
wind up getting

Q = [v2 v1 v3] =

 4 0 1
−2 1 0
−1 0 0

 .

Finally, the diagram tells us that we get 2 Jordan blocks this time. Both have value 2,
but one is of size 2 and one is of size 1. So

J =

 2 1 0
0 2 0
0 0 2

 .

We drew the lines just to illustrate the blocks. You can check in this example, and in
all of the previous ones, that indeed J = Q−1AQ.


